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The collapse of a viscous tube 
By J. A. LEWIS 

Bell Laboratories, Murray Hill, New Jersey 07974 

(Received 16 June 1976 and in revised form 22 October 1976) 

The collapse of a composite circular viscous tube owing to external pressure and 
surface tension is considered. It is shown that, for small surface tension, the collapse 
time, a t  which the tube closes, is very sensitive to the viscosity of the inner tube. 

1. Introduction 
We consider the radial collapse of a composite viscous tube owing to  external 

pressure and surface tension. This problem arises in the manufacture of optical fibre, 
which consists of a ‘core’ of high refractive index surrounded by a silica ‘cladding’. 
The fibre is drawn from a composite cylindrical billet, or ‘preform’, softened in a 
furnace or laser beam. This preform is fabricated by depositing the high index glass on 
the inside of a silica tube which is then collapsed by successive passes of a ring of gas 
flames (four or more burners being used) while being rotated in a glass lathe tto preserve 
symmetry. It is this collapse process, shown schematically in figure 1, which we study 
here. 

I n  order to obtain results of use to the process designer, we consider only the simple 
problem of the collapse of a composite tube with piecewise constant viscosity. Properly 
we should simultaneously calculate the fluid motion and the temperature distribution, 
which are coupled by the strong dependence of the viscosity on temperature typical 
of glassy materials. This problem is further complicated by radiative transfer in the 
partially transparent, white-hot material, silica softening at  a temperature of the 
order of 2000°K. At this stage it seems expedient to bypass this vastly more com- 
plicated problem. 

The collapse of the composite tube, with piecewise constant viscosity, is described, 
as we shall see, by a first-order ordinary differential equation which is soluble, in 
general numerically, by quadratures. I n  spite of this simplicity, the process presents 
some novel features, which we now discuss. 

(i) Collapse mechanism. One might suppose that collapse is caused by surface 
tension, resisted by the viscosity of the tube as i t  is softened in the gas flame. A simple 
order-of-magnitude argument, however, suffices t o  show that this is not the case. 
From the surface tension T ,  the overpressure Ap, a typical viscosityp and some typical 
dimension, e.g. the initial inner radius a, of the tube, we can form two typical times: 
a ‘surface-tension collapse time ’ pa,/T and a ‘viscous collapse time ’ p/Ap. If we insert 
typical values, namely a, - 0.5 cm, T - 200 dyne/cm and p N 106P (Bacon, Hasapis 
& Wholley 1959)) we find a surface-tension collapse time of the order of 2500s, a 
sizeable fraction of an hour, whereas the actual process takes place in a matter of 
minutes. Now in fact the ring of gas flames exerts a pressure on the rotating tube 
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FIGURE 1. The collapse process. 

whose magnitude may be estimated from the experimental observation that an 
increase in internal pressure of about 1 in. of water ( - 2.5 x lo3 dyne/cm2) is sufficient 
to stop collapse. This gives a collapse time of about 400 s, more in line with experience. 

(ii) Core viscosity. This study was initiated by the experimental observation that 
the collapse time of a composite silica-glass tube is considerably less than that of a 
homogeneous silica tube of the same dimensions. A simple explanation is not hard to 
find. Consider first the purely viscous collapse of a homogeneous tube of viscosity 
ps  owing to the overpressure Ap alone. The collapse time is ultimately determined by 
the balance between viscous stress, of order pu,a/a a t  the inner radius a, and the over- 
pressure Ap. Purely viscous collapse is then exponential, with a + 0 only as t + 00. In 
a composite tube the same result applies except that pa is replaced by pg, the core 
viscosity. However, when pg is zero, the core material serves merely as a pressure 
transmitter, offering no resistance to the motion, which must cease when the in- 
compressible core material fills the original void. Thus, for purely viscous collapse, 
the collapse time is infinite for any positive core viscosity pg, no matter how small, 
but finite when pa = 0. The presence of a small surface tension removes this infinity, 
replacing it, as we shall see, with a finite collapse time of order (pJAp) In (a,Ap/T),  
which exhibits a similar sensitivity to the value ofpg for small T .  

Figure 2 illustrates this state of affairs for a typical preform which has a diameter 
2b, = I cm, a core area one-half the total area (A2 = (cc/bc)2 = 0-5) and which is formed 
from a composite tube with an initial inside diameter equal to the preform diameter 
(01, = a&, = 1) .  Since drawing preserves geometrical similarity, h is the same for 
bot,h the fibre and the preform. For a given fibre h is then fixed and b, gives the length 
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FIGURE 2. The inner radius of a composite viscous tube as a function of time. 

of fibre (proportional to b:) which may be drawn from a preform of given length. It 
is thus convenient to use b, as the length scale, as in figure 2 .  

The collapsing composite tube, which initially has a = a, = 1, passes through all 
possible initial configurations with thicker walls, for example the composite tube with 
a = +, sketched in the figure. Larger values of a, correspond to tubes with very thin 
walls with large initial collapse rates. For example, if a, is increased to 5 the dimension- 
less collapse time of the homogeneous tube considered in figure 2 ( u  = p,,/p8 = 1 ,  
E = T / b c  Ap = 0.1) is increased from 7, = 2.00 to only 7, = 2.29. 

The solid curves in figure 2 are exact solutions of the differential equation for 
collapse of a homogeneous tube ( u  = 1, E = 0.1) and of a composite tube ( u  = E = 0.1). 
The upper dashed curve ( u  = 1,  E = 0) shows purely viscous collapse of the homo- 
geneous tube. I n  this case a+O only as 7+00. On the other hand, the lower dashed 
curve ( u  = E = 0) shows the limiting case of a resistanceless core without surface 
tension. Even with u = 0.1, a very modest decrease in viscosity for typical glasses, 
one begins to approach the limiting curve. 

I n  figure 2 we have assumed a surface tension T = 200 dynelcm and an overpressure 
Ap = 4 x lo3 dynelcm2, to give the value E = 0.1 for b, = 0.5 cm. Provided that e is 
held fixed by varying Ap, the curves in figure 2 apply to any other preform diameter, 
but of course with a different typical time 2pJAp. The circles indicate the approximate 
solution 

valid for small 6 ,  where a = alb,, y = c/b,  and P = b/bc for an inner radius a, inter- 
mediate radius c and outer radius b.  The corresponding collapse time, a t  which a = 0, 
is then approximated by 

Yo 
h 

+€) 

I + €  8 
+ (1  - v) In- -InPo, 

- U 
7c z 7, = -In 
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FIGURE 3. The collapse time as a function of the small surface-tension parameter 8. 

so that 7c tends to infinity like In (I/€) as E tends to zero. Figure 3 shows 7, and 5, 
(circles) as functions of B for h2 = 0.5 and a. = 1 for the cases v = 0.1, 0.5 and 1.0 
and the limiting case v = 0. 

I n  the following, we first derive an ordinary differential equaticn for the collapse 
motion having the dimensionless form 

I n  terms of 7' = 7, - 7, this can be integrated, in general numerically, backwards 
from a = 0 until the given value of a. is reached. The approximate solution is obtained 
by combining two solutions, one valid for the initial, viscous collapse near a = ao, 
the other for final closure with small surface tension. 

The procedure amounts technically to the determination of a composite expansion 
from two matched asymptotic expansions in E ,  one near a = 0, in terms ofa  'stretched 
variable' cx" = a/€, the other for large a. However, as the approximation is easily 
derived from a simple physical argument and the exact solution is expressed as an 
explicit integral over a, i t  seems easier to estimate the approximation error directly 
than to  apply the matching technique. The factors of 1 + E in (1) and (2), which make 
the error of order E ,  are introduced to  make the error calculation simpler. Their 
inclusion amounts to a first approximation of the effect of finite tube diameter on 
final closure, the zeroth approximation being simply a hole in an infinite medium. 
For example, in their absence (2) gives 

d.r/da = -f(a). 

a ~ + E +  ( 1  - v) In Yo - -~np, ,  
h 

7, M vln- 
E 

a simpler approximation which amounts to extending the straight, left-hand portions 
of the curves in figure 3 to the right: not a very great change, a t  least for E < 0.1. 

I n  the following we first derive the differential equation describing collapse from the 
equations governing viscous flow. We then use a simple physical argument to derive 
(1)  and (2).  Finally we calculate the error in the approximations so obtained. 
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2. The collapse equation 

p ( r ,  t )  satisfy the equations 
In the radial motion of a viscous incompressible Auid the velocity u(r ,  t )  and pressure 

(3) 

( 4 )  

a(ru)/ar = 0, 

arwlar = (780 - 7rr)/r, 

where the radial and circumferential stresses rw and rss are given by 

rTr = - p + 2p  aular, roo = - p + 2pulr 

for a viscosity p = p(r ,  t ) .  In ( 4 )  we have already neglected the fluid inertia in the 
present low speed, high viscosity flow. It is an easy matter, and an unnecessary frill, 
to take it into account by inserting an initial ‘acceleration boundary layer’ near t = 0. 

These equations hold in a( t )  < r < b(t) ,  while on r = a 

u = a, rw = -pa+T/a, 
for an internal pressure pa and surface tension T ,  and on r = b 

u = 6, rw = - p b - T / b ,  
for an external pressurepb. Finally we have the initial conditions 

a(0) = a,, b(0 )  = bo 
and the overall incompressibility condition 

b2-aZ = bz-az 
0 0‘ 

Equation (3) and the boundary conditions on u imply that 

so that 

Integration yields 

and use of the boundary conditions on rw yields the collapse equation 

rv = ( rJa  + 4acE r p d r / r 3  
.a 

4 a r i / : p d r / r 3 + T ( l / a +  l / b )  = -Ap, ( 5 )  

where A p  = pb -p,. We now assume that 

for a(t) < r < c ( t ) ,  

,us for c ( t )  < r < b(t) ,  

where po is the constant viscosity of the glassy ‘core’, ps the constant viscosity of the 
silica ‘cladding ), and the core radius c satisfies the incompressibility condition 

In this case ( 5 )  becomes 
c2 - a2 = c2 - a2 

0 0‘  

where v = pu,lps and b2 = b $ - a $ + a 2  = b:+a2, 

c2 = c$-a$+a2 = c:+a2 

for a final cladding (preform) radius b, and core radius c,. 
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3. Small surface tension 

T = 0, ( 6 )  has the solution (Hint: ah = bb = c C )  
We now seek an approximate solution of (6) for small T .  First we note that, when 

t = (2ps/Ap) [vln (a,/a) + (1 - v) In (c,/c) -In (b,/b)].  (7) 

This should give a good approximation for large a, i.e. when T / a  < Ap. As we would 
expect for purely viscous collapse, a -+ 0 only for t -+ 03, except of course in the case of 
a resistanceless, incompressible core (v = 0). 

On the other hand, near closure, as a +. 0, b -+ b, and c +c,, a satisfies the equation 
for the collapse of a hole in an infinite homogeneous medium under pressure, namely 

2p8 va/a -+ T / a  = - Ap, (8 )  

with the solution a = - T/Ap + (a, + T/Ap)  exp ( - Apt/2ps v) 

or t = (2p8/Ap) v In a, + T/AP 
a + T/Ap ' (9) 

where t is measured from the time at which a has the small value a,. This suggests 
somehow superposing (7) and (9) to obtain a solution valid for all a. Actually we need 
only observe that, if we replace a, by a, in (9), then, when T/a,Ap < 1, (9) gives the 
first term of (7) as a +ao. Thus a first approximation for all a is 

Equation (10) gives a useful approximation for most practical purposes. For example, 
it exhibits the observed sensitivity to core viscosity, for when T/a,Ap < 1 the collapse 
time t,, at which a = 0, is of order 

4 (2PSlAP) vln (a, APlT), 

which is directly proportional to pg = vp8. We can, however, improve (10) slightly 
with very little additional effort and this we do, not so much to improve the accuracy 
of the approximate solution, but to facilitate our subsequent error calculations. 

Whereas we obtained (8) by neglecting both 1/b2 and 1/c2 compared with l/a2 and 
l / b  compared with I /a ,  we can obtain a first approximation to the effect of finite tube 
diameter by replacing l / b  by l /bc .  This gives the same solution except that Ap is 
replaced everywhere by Ap + T/b,. Equation (10) thus becomes 
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4. An error estimate 
It remains to show that (1 1) is a bona fide approximation, i.e. that, for all a, t - f ,  

or rather the dimensionless time difference r - ;i: = (Ap/2p8)  ( t  - i), vanishes as E +  0. 
This we do by direct computation. First we note that (6) can be put in the dimensionless 
form d ~ / d a  = - f (a), 

where f ( a )  = [(I -h2)a2+vh2p2] /py2[a~+E(a+p)] ,  

so that r = Iuua f (a)  da.  

Similarly T = I : f ( a ) d r ,  

where 
( 1 - v ) a  a V +--- m = ( l + s ) a + s  y2 p2 

and we have again made use of the identities a da = p d p  = y d y .  For small E ,  

v( 1 +a) p ” r 2  - (a +p)  [( 1 - A 2 )  a2+ VA2p21 

a2PY2 
f - f = E  9 

plus terms which vanish more rapidly than e as E + 0. This is clearly bounded when 
a > 0. The critical case is then a + 0, for which one can show that the numerator is 
of order a2, so that f -f is bounded as a -f 0 and r - 7 is of order E for small E for all 
a 2 0. 
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